If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x=14
We move all terms to the left:
2x^2+20x-(14)=0
a = 2; b = 20; c = -14;
Δ = b2-4ac
Δ = 202-4·2·(-14)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-16\sqrt{2}}{2*2}=\frac{-20-16\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+16\sqrt{2}}{2*2}=\frac{-20+16\sqrt{2}}{4} $
| 22x+100=25x+40 | | 1-8q=-7q | | -8-m=7 | | 5=h+16/8 | | b/4=5=14 | | 28+7c=8+12c | | 60-6x=200-46x | | m-5/3=m=1/5 | | 4(2x-5)+10=30 | | 7(d+81)-5=23 | | 15+4h=6h | | 40x^2-160=0 | | 60-2x=13 | | 5(r+64)-72=3 | | 12x/2-4=2(3x-2) | | 4=v/3 | | 60=64-z | | 2(1-x)-3(2-x)=16 | | x=4+x=1+x=2+x=6+x=5 | | −5/4x+5/3x=−35/36 | | 12v+15=19 | | 6{x+3}=48 | | 8x^2+32x+31=0 | | 7g–g+2g=0 | | 2(f-7)-10=8 | | 4(x-3)/2(-x/3)=8 | | -21+6a=2(3a-7) | | 5f+16=6-5f | | 1800=1200=45p | | 27-2x=-7-1(-3x-4) | | 2+j=12 | | 9(8-5)+13=12d-2 |